Five-Coordinate Bent Metallocenes. Structure and Dynamics of Bis(q-cyclopentadienyl)chloro(N,N-dialkyldithiocarbamato)zirconium(IV) Complexes

MICHAEL E. SILVER,^{1a} ODILE EISENSTEIN,^{*1b} and ROBERT C. FAY*^{1a}

Received August 31, 1982

The crystal and molecular structure of bis(*n*-cyclopentadienyl)chloro(*N*,*N*-diethyldithiocarbamato)zirconium(IV), (*n*-C₃H₃)₂ZrCl[S₂CN(C₂H₃)₂], has been determined by X-ray diffraction and has been refine C_5H_5)₂ZrCl[S₂CN(C₂H₅)₂], has been determined by X-ray diffraction and has been refined anisotropically by least-squares methods to $R_1 = 0.038$ and $R_2 = 0.048$ using 2048 independent diffractometer data hav 2.0 σ_F . The compound crystallizes in the monoclinic space group P_{11}/n with four molecules in a cell having dimensions $a = 17.619$ (4) Å, $b = 13.892$ (3) Å, $c = 7.102$ (1) Å, and $\beta = 93.33$ (2)° ($\rho_{\text{obsd}} = 1.549$, molecules have a five-coordinate bent metallocene structure with the Zr atom, C1 atom, and the two **S** atoms of the bidentate dithiocarbamate ligand lying in a quasi mirror plane that is nearly perpendicular to the plane defined by the Zr atom and the centroids of the two symmetrically attached η -C₅H₅ groups. Because of crowding in the ZrClS₂C₁₀ coordination group, the Zr-C1 and Zr-S bonds to the lateral coordination sites are unusually long (2.556 (2) and 2.723 (2) **A,** respectively); these distances are the longest terminal Zr-Cl and Zr-S bond lengths yet observed for any structure involving Zr(IV). A 300-MHz 'H NMR study has yielded the following kinetic data for methyl group exchange in the corresponding N,N-dimethyl derivative, $(\eta \cdot \hat{C}_5 H_5)_2 ZrCl[S_2CN(CH_3)_2]$: $k(25 \text{ °C}) = 8.6 \text{ s}^{-1}$, $\Delta G^*(25 \text{ °C}) = 16.18 \pm 0.08 \text{ kcal/mol}$, $\Delta H^* = 15.9 \pm 2.0 \text{ kcal/mol}$, $\Delta S^* = -1.0 \pm 6.8 \text{ eu}$. Possible mechanisms for the exchange process hav $b = 15.9 \pm 2.0$ kcal/mol, $\Delta S^* = -1.0 \pm 6.8$ eu. Possible mechanisms for the exchange process have been analyzed on the basis of kinetic and structural data and extended Hückel molecular orbital calculations. A mechanism bond rotation is preferred.

Introduction

The electronic structure and molecular geometry²⁻⁶ and the chemistry⁷⁻¹³ of bent bis(η -cyclopentadienyl) transition metal complexes $(n-C₅H₅)₂ML_n$ are subjects of considerable current interest. These compounds exhibit a rich and novel chemistry. For example, bent metallocenes of group **4** transition metals have been shown to fix nitrogen,⁷ functionalize olefins (hydrozirconation),⁸ insert carbon monoxide into metal-carbon bonds, $9-11$ reduce carbon monoxide under mild conditions, 12 and activate carbon dioxide.¹³

The vast majority of $(\eta$ -C₅H₅)₂M^{IV} complexes are 16electron complexes with two additional ligands, $(\eta$ - $C_5H_5)_2ML_2$.¹⁴ Consequently, we have been interested in recent reports of the synthesis and characterization of a series of chloro-dithiocarbamato complexes of the type $(\eta$ -
C₅H₅)₂MCl(S₂CNR₂) (M = Ti, Zr; R = alkyl),^{15,16} (η - C_5H_5)₂MCl(S₂CNHR) (M = Ti, Zr; R = aryl),^{17,18} and (η -

- (a) Cornell University. (b) The University of Michigan.
- Lauher, J. W.; Hoffman, R. *J. Am. Chem.* **SOC. 1976,** 98, 1729.
- Alcock, N. W. *J. Chem.* **SOC.** *A* **1967,** 2001.
- Green, J. C.; Green, M. L. H.; Prout, C. K. *J. Chem. Soc., Chem. Commun.* **1972,** 421.
- Prout, C. K.; Cameron, T. **S.;** Forder, R. A.; Critchley, **S.** R.; Denton, B.; Rees, G. V. *Acta Crystallogr., Sect. B* **1974,** *830,* 2290.
- Petersen, J. L.; Dahl, L. F. *J.* Am. *Chem.* **SOC. 1974,** 96, 2248.
- (a) Bercaw, J. E. *J. Am. Chem. SOC.* **1974,** 96,5087. (b) Manriquez, J. M.; Bercaw, J. E. *Zbid.* **1974,** 96, 6229.
- (8) (a) Hart, D. W.; Schwartz, J. *J. Am. Chem. Soc.* 1974, 96, 8115. (b) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, *333.*
- Bertelo, C. A.; Schwartz, J. J. *Am. Chem. SOC.* **1975,** *97,* 228.
- (a) Fachinetti, G.; Floriani, C.; Marchetti, F.; Merlino, S. J. Chem. Soc., Chem. Commun. 1976, 522. (b) Fachinetti, G.; Fochi, G.; Floriani, C.
J. Chem. Soc., Dalton Trans. 1977, 1946.
- (a) Erker, G.; Rosenfeldt, F. *Angew. Chem., Znt. Ed. Engl.* **1978,** *17,* 605. (b) Erker, G.; Rosenfeldt, F. *J. Organomet. Chem.* **1980,** *188,* C1.
- Wolczanski. P. T.: Bercaw. J. E. *Acc. Chem. Res.* **1980.** *13.* 121. Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. *j. Am. Chem.*
- **SOC. 1979,** *101,* 1767.
- Wailes, P. C.: Coutts, R. **S.** P.: Weigold. H. "Organometallic Chemistrv of Titanium, Zirconium, and Hafzum"; Acadgmic Press: New Yo&, 1974.
- Jain, V. K.; Kumar, V.; Garg, B. *S. Znorg. Chim. Acta* **1978,** 26, 197. Kaushik, N. K.; Bhushan, B.; Chhatwal, G. R. *Transition Met. Chem.*
- (16) **1978,** *3,* 215.

 $C_5H_4CH_3$)₂TiCl(S₂CNHR) (R = aryl).¹⁹ These compounds are monomeric nonelectrolytes in solution, and IR evidence points to a bidentate attachment of the dithiocarbamate ligands. **A** five-coordinate trigonal-bipyramidal structure with the two cyclopentadienyl ligands in axial positions **(1)** has been

on the basis of a single cyclopentadienyl resonance¹⁵⁻¹⁸ and a single dithiocarbamate alkyl resonance^{15,16} in 60-MHz ¹H NMR spectra at 30 $^{\circ}$ C. This geometry is unprecedented and is unlikely for steric reasons. The expected bend metallocene structure **(2)** is consistent with the observed

NMR spectra if (1) the complexes are fluxional at 30 \degree C or (2) the alkyl resonances are unresolved at 60 MHz. Because 18-electron $(\eta$ -C₅H₅)₂ML₃ complexes are uncommon for group **4** transition metals14 and because five-coordinate zirconium- (IV) is rare,²⁰ we have determined the X-ray crystal structure of a representative **bis(a-cyclopentadienyl)chloro(dithio**carbamato)zirconium(IV) complex, $(\eta$ -C₅H₅)₂ZrCl[S₂CN- $(C_2H_5)_2$. The only other $(\eta$ -C₅H₅)₂ZrL₃ complex whose structure has been established by X-ray diffraction is *(q-* C_5H_5)₂Zr(COCH₃)(CH₃) (3), a bent metallocene that con-

- (17) Kaushik, N. **K.;** Bhushan, B.; Chhatwal, G. R. *Synth.* React. *Znorg. Mer.-Org. Chem.* **1978,** *8,* 467.
- **(18)** Kaushik, N. **K.;** Bhushan, B.; Chhatwal, G. R. *J. Znorg. Nucl. Chem.* **1980,** 42, 457.
- (19) Kaushik, N. K.; Bhushan, B.; Chhatwal, G. R. Z. *Naturforsch., B: Anorg. Chem., Org. Chem.* **1979,** *348,* 949.
- (20) Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry"; Wiley: New York, 1980.

tains an η^2 -acetyl ligand.¹⁰ Very few $(\eta$ -C₅H₅)₂ML₃ complexes of any type are known, perhaps due to the steric requirements of the three additional ligands. The best known examples are the trihydride complexes of group *5* and group 6 metallccenes, $(\eta$ -C₅H₅)₂NbH₃,²¹ (η -C₅H₅)₂TaH₃,^{21,22} and *[(* η - $\rm C_5H_5)_2WH_3]^{+.21,22}$

The present work establishes the bent metallocene geometry 2 for $(\eta$ -C_sH_s)₂ZrCl[S₂CN(C₂H_s)₂] and reveals some unusually long Zr-Cl and Zr-S bond distances. Also reported in this paper are (1) a variable-temperature NMR study of hindered rotation about the C $-$ N bond in the dithiocarbamate ligand of $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] and (2) extended Hiickel molecular orbital calculations relating to the mechanism of metal-centered rearrangement in $(\eta$ -C₅H₅)₂ZrCl- (S_2CNR_2) complexes.

Experimental Section

Reagents and General Techniques. Sodium N,N-dimethyldithiocarbamate dihydrate, $Na[S_2CN(CH_3)_2]$. 2H₂O, was prepared by reaction in aqueous solution of equimolar amounts of dimethylamine, carbon disulfide, and sodium hydroxide.²³ Na[S₂CN(C₂H₅)₂].3H₂O was obtained from Fisher Scientific Co. Both salts were **dried** in vacuo over phosphorus(V) oxide at 110 $\rm{^oC}$ until their infrared spectra showed no water. Solvents were dried by refluxing for at least 24 h over phosphorus(V) oxide (dichloromethane and carbon tetrachloride) or calcium hydride (hexane). All syntheses and subsequent handling of the $(\eta$ -C₅H₅)₂Z_{rCl}(S₂CNR₂) complexes were conducted under anhydrous conditions in a dry nitrogen atmosphere.

Bis(q-cyclopentadienyl)chloro(N,N-dimethyldithiocarbamat0) zirconium(1V). This compound was prepared by the method of Jain et al.¹⁵ by reaction for 24 h of equimolar amounts of $(\eta$ -C₅H₅)₂ZrCl₂ (Alfa Products) and anhydrous $Na[S_2CN(CH_3)_2]$ in refluxing dichloromethane. Recrystallization from dichloromethane-hexane afforded clear, colorless crystals of $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂]; the solid decomposes without melting at $210-220$ °C (lit.¹⁵ mp 205-210) °C dec). Anal. Calcd for $Zr(C_5H_5)_2(C_3H_6NS_2)$ Cl: C, 41.41; H, 4.28; C1,9.40, N, 3.71; Zr, 24.19. Found: C, 41.51; H, 4.28; C1,9.40, N, 3.65; Zr, 24.15. Molar conductance $(5.7 \times 10^{-3} \text{ M in CH}_2 \text{Cl}_2)$, 25.0 °C): <7.9 \times 10⁻³ Ω^{-1} cm² mol⁻¹. ¹H NMR (ppm): -3.34 (CH₃), -6.17 (C₅H₅) in CDCl₃; -3.32 (CH₃), -6.14 (C₅H₅) in CD₂Cl₂. IR (Nujol mull) (cm⁻¹): ν (C ν N) 1525, ν (C ν S) 997, ν (Zr ν S) 364, $\nu(Zr-C1)$ 340.

Bis(η -cyclopentadienyl)chloro(N,N-diethyldithiocarbamato)zir**conium(1V).** This complex was also prepared as described by Jain et al.15 Recrystallization from dichloromethane-hexane gave clear, colorless crystals of $(\eta$ -C₅H₅)₂ZrCl[S₂CN(C₂H₅)₂]; mp 196–201 °C dec (lit.¹⁵ mp 172-175 °C dec). ¹H NMR (ppm): -1.25 (CH₃, triplet), -3.79 (CH₂, quartet), -6.17 (C₅H₅) in CDCl₃.

Nuclear Magnetic Resonnnce Spectra. Proton chemical shifts were measured at ambient probe temperature (\sim 34 °C) with a Varian EM-390 90-MHz spectrometer. Chemical shifts were measured relative to an internal reference of tetramethylsilane.

Variable-temperature pulsed Fourier-transform ¹H NMR spectra of a sealed ~ 0.1 M solution of $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] in dichloromethane- d_2 were recorded in the temperature range -58.6 to +71.1 *"C* with a Bruker WM-300 300-MHz spectrometer, which was locked on the solvent deuterium resonance. Temperatures, determined with a copper-constantan thermocouple immersed in acetone, are estimated to be accurate to ± 0.5 °C.

Rate constants *k* for exchange of dithiocarbamate methyl groups between the two inequivalent environments of $(\eta$ -C₅H₅)₂ZrCl- $[S_2CN(CH_3)_2]$ were determined by quantitative comparison of experimental spectra with theoretical spectra calculated with use of the Saunders NMR line-shape program.²⁴ Spectra were compared with respect to the following characteristic line-shape parameters, which were used to determine an average value of *k* at each temperature: (1) line widths at one-fourth $(w_{1/4})$, one-half $(w_{1/2})$, and three-fourths $(w_{3/4})$ maximum amplitude (above the coalescence temperature, T_c) and (2) the frequency separation *6u* between the two absorption maxima, the ratio *r* of the maximum amplitude to the amplitude at the central minimum, and, where the two resonances are sufficiently well resolved, line widths at three-fourths maximum amplitude (below *T,).* Line widths and frequency separations in the absence of exchange, $(w_{1/2})_0$ and $\delta\nu_0$, respectively, are both temperature dependent. Values of $(w_{1/2})_0$ appropriate to temperatures in the coalescence region were obtained by extrapolating a linear plot of log $w_{1/2}$ vs. $1/T$ from the fast- and slow-exchange regions into the coalescence region. Appropriate values of $(\delta \nu_0)$ in the coalescence region were determined by extrapolating a linear plot of $\delta \nu$ vs. $1/T$ from the slow-exchange region into the coalescence region.

Crystallography. Several clear, colorless crystals of **(7-** C_5H_5)₂ZrCl[S₂CN(C₂H₅)₂] were sealed in 0.5-mm diameter Lindemann glass capillaries under an atmosphere of dry nitrogen. Weissenberg photographs indicated the crystal system to be monoclinic, and the systematically absent reflections *(hOl for* $h + l \neq 2n$ *and 0k0* for $k \neq 2n$) identified the space group as $P2_1/n$. The lattice constants of $a = 17.619$ (4) \AA , $b = 13.892$ (3) \AA , $c = 7.102$ (1) \AA , and $\beta =$ 93.33 (2) \degree were determined by least-squares refinement of the diffraction geometry for 15 reflections ($2\theta > 16^{\circ}$) centered on a computer-controlled four-circle Syntex $P2₁$ diffractometer using graphite-monochromated Mo $K\bar{\alpha}$ radiation (λ 0.71069 Å). The calculated density based on four molecules of $(\eta^5-C_5H_5)_2ZrCl[S_2CN(C_2H_5)_2]$ per unit cell is 1.551 g cm⁻³; the observed density, measured by flotation using a solution of carbon tetrachloride and hexane, was 1.549 g cm⁻³.

A rectangular-shaped prism of dimensions 0.67 **X** 0.19 **X** 0.07 mm was chosen for collection of intensity data. The data were collected on the Syntex P2₁ diffractometer by using the θ -2 θ scan technique with graphite-monochromated Mo $K\alpha$ radiation at a takeoff angle of 6.3% and a glancing angle of 2.5°. A variable scan rate ranging from $2^{\circ}/$ min for reflections of intensity \leq 150 counts/s to 29.3°/min for reflections of intensity *2* 1500 counts/s was employed. The range of each scan consisted of a base width of 2.0° at $2\theta = 0$ ° and an increment of $\Delta(2\theta) = (0.692 \tan \theta)$ ^o to allow for spectral dispersion; background counts of duration equal to half the total scan time were taken at both limits of the scan. Reflections with intensities greater than 50000 counts/s were flagged as being too intense to measure and were collected at lower tube current settings. The intensities of three standard reflections, measured at 63-reflection intervals, gave no indication of misalignment or deterioration of the crystal.

A total of 2484 unique reflections having $2\theta \le 45.0^{\circ}$ (0.62 times the number of data in the limiting Cu K $\bar{\alpha}$ sphere) were scanned. On the basis of the cited dimensions of the crystal and a linear absorption coefficient of 9.95 cm⁻¹, the maximum error resulting from neglect of absorption corrections was estimated to be $\leq 6.8\%$ in any intensity and \leq 3.4% in any structure amplitude. It was felt that absorption corrections would not significantly improve the reliability of the data. The intensity **data** were reduced to a set of relative squared amplitudes, $|F_0|^2$, by the application of standard Lorentz and polarization factors. Those 2048 reflections having $|F_0| > 2.0 \sigma_F$, where σ_F is defined elsewhere,25 were retained as "observed" for the structure analysis.

Structure Determination and Refmement. The structure was solved by application of Patterson and Fourier techniques and was refined by full-matrix least-squares techniques using anisotropic thermal parameters for all 20 non-hydrogen atoms, anomalous dispersion corrections for the Zr, Cl, and *S* atoms, and $w = 1/\sigma^2$ weighting. The function minimized was $\sum w(|F_0| - |F_0|)^2$. A difference Fourier synthesis upon convergence permitted location of the 20 hydrogen atoms. In subsequent cycles of refinement, the H atoms were assigned fixed positions and isotropic thermal parameters 1 **.O A*** larger than the equivalent isotropic thermal parameter of the attached *C* atom;

⁽²¹⁾ Wilson, R. D.; Koetzle, T. F.; Hart, D. W.; Kvick, **A.;** Tipton, D. L.; Bau, R. *J.* Am. *Chem. Soc.* 1977, *99,* 1775.

⁽²²⁾ **Green,** M. L. H.; McCleverty, J. **A,;** Pratt, L.; Wilkinson, *G.* J. *Chem. SOC.* 1961, 4854.

⁽²³⁾ Klopping, H. L.; van der Kerk, *G.* J. M. *Red. Trau. Chim. Pays-Bas* 1951, *70,* 917.

⁽²⁴⁾ M. Saunders, Department of Chemistry, Yale University, New Haven, CT.

⁽²⁵⁾ Radonovich, L. J.; Bloom, **A.;** Hoard, J. L. J. *Am. Chem. SOC.* 1972, *94,* 2073.

Table **I.** Final Atomic Fractional Coordinates for $(\eta$ -C_sH_s)₂ZrCl[S₂CN(C₂H_s)₂]^a

10 ⁴ x	10 ⁴ y	10 ⁴ z	
2699.5 (2)	5417.0 (3)	4341.9 (5)	
2075.1(8)	4718 (1)	1304 (2)	
3395.6 (7)	6179(1)	1515(2)	
3838.0(8)	6676 (1)	5337 (2)	
4592 (2)	7301 (3)	2429(6)	
4020(3)	6793(3)	3013(6)	
4707 (3)	7407 (5)	391 (8)	
5178 (4)	6625(6)	$-267(9)$	
5157(3)	7768 (4)	3763(8)	
4955 (3)	8791 (4)		
1646 (4)	5705(5)	6528 (9)	
2120(3)	6488 (5)	6721(7)	
2059(3)	6999 (4)	5034(8)	
1569(3)	6512(4)	3784 (8)	
1317 (3)	5689 (4)	4696 (10)	
2790 (6)	4055(5)		
3455(7)	4548 (5)		
3834(3)	4381 (5)		
3386 (4)	3844 (4)		
2732 (4)	3636(4)	4964 (11)	
			4126 (10) 6674 (11) 6885 (13) 5241 (14) 4079 (8)

Numbers in parentheses are estimated standard deviations in the last significant figure.

Figure 1. Model in perspective of the $(\eta$ -C₅H₅)₂ZrCl[S₂CN(C₂H₅)₂] molecule. Each atom is represented by an ellipsoid consistent with the thermal parameters in Table **11.**

the coordinates and anisotropic thermal parameters of the **20** nonhydrogen atoms were allowed to vary as before. In the final cycle of refinement no parameter varied by more than **0.17** (the average was **0.03)** of its estimated standard deviation, and the discrepancy indices

$$
R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|
$$

$$
R_2 = [\sum w(|F_o| - |F_c|)^2 / \sum w|F_o|^2]^{1/2}
$$

were **0.038** and 0.048, respectively. A final difference Fourier showed no anomalous features; the strongest peak had a density of **0.62** e/A3.

Scattering factors were taken from Cromer and Mann²⁶ for Zr^0 , Cl⁰, S⁰, N⁰, and C⁰ and from Stewart, Davidson, and Simpson²⁷ for $H⁰$. Anomalous dispersion corrections, real and imaginary, for Zr , Cl, and S were obtained from Cromer.²⁸ Calculations were performed on PRIME 300 and IBM 370/168 computers using programs listed in a previous paper.²⁹

Results and Discussion

Solid-State Structure of $(\eta$ **-C₅H₅)₂ZrCl[S₂CN(C₂H₅)₂]. In** order to establish the molecular geometry of a representative $(\eta$ -C₅H₅)₂ZrCl[S₂CNR₂] complex, we have determined the structure of the N,N-diethyl derivative by X-ray diffraction. Final atomic coordinates and thermal parameters are presented in Tables I and **11,** respectively. **A** table of observed and calculated structure factor amplitudes is available.³⁰

Figure 2. Projection of the $ZrCIS_2C_{10}$ coordination group onto the quasi mirror plane defined by the atoms Zr , Cl , $S₁$, and $S₂$. Cyclopentadienyl ring a is represented by a solid line; ring b is represented by a dashed line. Also shown is the twofold axis of the $(n-C_sH_s)$, Zr fragment, the line that bisects the (centroid C_5H_5)-Zr-(centroid C_5H_5) angle.

perspective view of the molecule showing the atom-numbering scheme is displayed in Figure 1; atoms of the two η -cyclopentadienyl ligands are distinguished by a literal subscript (a or b). Bond distances, nonbonded contacts, and bond angles in the coordination group are given in Table 111.

Molecules of $(\eta$ -C₅H₅)₂ZrCl[S₂CN(C₂H₅)₂] have the bent metallocene geometry **2,** with the Zr atom attached to a C1 atom, a bidentate **N,N-diethyldithiocarbamate** ligand, and two symmetrically bound η -C₅H₅ ligands. If each η -C₅H₅ group is considered to occupy a single coordination site, the Zr atom has coordination number *5.* The molecules occupy general positions of the space group *P2,/n* and are not required to have any symmetry. However, the $ZrCIS_2C_{10}$ coordination group closely approximates C_s -m symmetry, with the Zr, Cl, S₁, and **S2** atoms in the quasi mirror plane (atomic displacements ≤ 0.001 Å; cf. Table VI) and the η -C₅H₅ ligands symmetrically disposed on opposite sides of this plane. The η -C₅H₅ rings are eclipsed, as is shown in Figure 2, which is a projection of the $ZrCIS_2C_{10}$ coordination group onto the quasi mirror plane. Both η -C_sH_s rings are planar, with displacements of the C atoms from the mean planes of the ligands being ≤ 0.017 Å (cf. Table VI). The angle between the normals to the planes of the two η -C₅H₅ ligands (128.9°) agrees closely with the (centroid C_5H_5)-Zr-(centroid C_5H_5) angle (129.4°), indicating that the Zr-(centroid C_5H_5) vectors are nearly orthogonal to the planes of the η -C₅H₅ ligands. The dihedral angle between the quasi mirror plane and the plane defined by the Zr atom and the centroids of the C_5H_5 rings is 89.5°.

There is considerable crowding in the $ZrClS_2C_{10}$ coordination group, as is evidenced by a number of nonbonded contacts that are appreciably less than the sum of the van der Waals radii.³¹ There are four cyclopentadienyl C--Cl contacts (C,,.-Cl, 3.21 **A;** Csa-.Cl, 3.13 **A;** C,,.-Cl, 3.19 **A;** Cs,...Cl, 3.16 **A),** which average 0.33 **A** less than the van der Waals contact, and four cyclopentadienyl $C \cdot S_2$ contacts $(C_{2a} \cdot S_2, C_{2b} \cdot S_1)$

⁽²⁶⁾ Cromer, D. T.; Mann, **J.** B. *Acta Crystallogr., Sect. A* **1968,** *A24,* **321. (27)** Stewart, **R.** F.; Davidson, E. R.; Simpon, W. T. *J. Chem. Phys.* **1965,**

^{42,} **3175.**

⁽²⁸⁾ Cromer, D. **T.** *Acra Crystallogr., Sect. A* **1965,** *A18,* **17. (29)** Steffen, W. **L.;** Fay, R. C. *Inorg. Chem.* **1978,** *17,* **2120.**

⁽³⁰⁾ See paragraph at end of paper regarding supplementary material.
(31) We take the van der Waals radii of a cyclopentadienyl carbon atom, chlorine, and sulfur to be $1.7³² 1.80³²$ and 1.73 Å,³³ respective

⁽³²⁾ Pauling, L. "The Nature of the Chemical Bond", **3rd** ed.; Cornell University Press: Ithaca, NY, **1960; p 260.**

⁽³³⁾ van der Helm, D.; **Lessor, A.** E., Jr.; Merritt, L. L., Jr. *Acta Crystallogr.* **1962,** *15,* **1227.**

a Numbers in parentheses are standard deviations in the last significant figure. ^b Anisotropic temperature factors are of the form ^a Numbers in parentheses are standard deviations in the last significant figure. ^b Anisotropic temperature factors are of the form
exp[$-\left(\beta_{11}h^2 + \beta_{23}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl\right)$]; the B_{ij} in

Table 111. Bond Distances, Nonbonded Contacts, and Bond Angles Subtended at the Zr(1V) Atom in the Coordination Group of $(\eta$ -C_sH_s $)$ ₂Z_{rCl}[S₂CN(C₂H_s)₂^a

Numbers in parentheses are estimated standard deviations in ² Numbers in parentheses are estimated standard deviations in
the last significant figure. ^b The "bite" of the ligand. ^c Cent Cp refers to the centroid of the cyclopentadienyl ring. d The numbers in parentheses following each averaged value are the estimated root-mean-square standard deviation for an individual datum and the mean and maximum deviations from the average value.

3.25 A; c3,"'s2, **3.16** *8,;* C2b"'S2, **3.24 A;** C3b"'S2, **3.19 A),** which average **0.22 A** less than the van der Waals contact. The Cl... S_1 distance (3.08 Å) is 0.45 Å less than the sum of the van der Waals radii, and the distance between the closest cyclopentadienyl C atoms $(C_{1a} \cdots C_{1b}$, 3.05 Å) is 0.35 Å less than the van der Waals contact between two aromatic rings. The crowding can be attributed to the presence of three relatively large donor atoms in the quasi mirror plane. **In** this connection, it is interesting to note that the $Cl-Zr-S_2$ angle (137.5°) is 40° larger than the Cl-Zr-Cl angle in $(\eta C_5H_5)_2ZrCl_2.^5$

Because of the crowding in the coordination group, the Zr –Cl and Zr – S_2 bond lengths (2.556 (2) and 2.723 (2) Å, respectively) are unusually long. Indeed, to our knowledge, these are the longest terminal Zr-C1 and Zr-S bond lengths yet observed for any structure involving Zr(1V). Typical Zr(1V)-C1 bond lengths are in the range **2.4-2.5** A;5,34-40 the

Table IV. Bond Lengths and Bond Angles in the **N,N-Diethyldithiocarbamate** Liganda

atoms	length, A	atoms	angle, deg					
$S_1 \cdots S_2$ ^b	2.865(2)	$S, -C-S$	113.8(3)					
$C-S,$	1.713(5)	$C-S, -Zr$	92.1(2)					
$C-S2$ $C-N$	1.707(5) 1.317(6)	$C-S_{2}-Zr$ $S, -C-N$	89.3(2) 121.1(3)					
		$S, -C-N$	123.1(3)					
$C, -N$	1.481(7)	$C, -N-C$	120.8(4)					
$C_{2}-N$	1.484(7)	$C_{\rm A}$ -N-C	122.1(4)					
		$C, -N-C$	117.1(4)					
$C, -C,$	1.459(10)	$N-C, -C,$	110.6(5)					
$C_{\rm a}$ - $C_{\rm a}$	1.492(8)	$N-C3-C4$	111.6(4)					

a Numbers in parentheses are estimated standard deviations in the last significant figure. The bite of the ligand.

 Zr –Cl distance in $(\eta$ -C₅H₅)ZrCl[S₂CN(C₂H₅)₂] is 0.12 Å longer than that in $(\eta$ -C₅H₅)₂ZrCl₂ (2.44 Å).⁵ The Zr-S₂ distance is 0.09 Å longer than the $Zr-S_1$ distance $(2.635(2))$ **A).** The latter distance may be regarded as a more "normal" $Zr-S$ bond length since sulfur atom S_1 makes no repulsive contacts with any of the cyclopentadienyl C atoms. The $Zr-S₁$ distance is intermediate between the Zr-S distances in the four-coordinate oxo-bridged dimeric phenyl mercaptide complex $[(\eta$ -C₅H₅)₂Zr(SC₆H₅)]₂O (2.542 (2) and 2.554 (2) Å)⁴¹ and the Zr-S distances in the seven-coordinate dithiocarbamate complex $(\eta$ -C₅H₅)Zr[S₂CN(CH₃)₂]₃ (2.655 carbamate complex Zr[SOCN(C2H5),] **(2.669 (1)** and **2.689 (1) A).29** It is interesting to note (cf. Figure **2)** that the Zr-S, bond does not lie along the C_2 axis of the $(\eta$ -C₅H₅)₂Zr fragment but is rotated by 6.6° in the direction of sulfur atom S_2 . $(1)-2.717$ (2) \AA ⁴² and the eight-coordinate monothio-

-
- (35) Muir, K. W. J. Chem. Soc. A 1971, 2663.
(36) Saldarriaga-Molina, C. H.; Clearfield, A.; Bernal, I. J. Organomet.
Chem. 1974, 80, 79.
- **(37)** ' Dusausoy, *Y.;* Protas, J.; Renaut, P.; Gautheron, **B.;** Tainturier, *G. J. Organomet. Chem.* **1978,** *157,* **167.**
- **(38) VonDrecle,** R. B.; Stezowski, J. J.; Fay, R. C. *J. Am. Chem. SOC.* **1971, 93, 2887.**
- **(39)** Brauer, **D. J.;** Kruger, C. *Inorg. Chem.* **1975, 14, 3053.**
-
-
- (40) Stezowski, J. J.; Eick, H. A. *J. Am. Chem. Soc.* 1969, 91, 2890.
(41) Petersen, J. L. *J. Organomet. Chem.* 1979, 166, 179.
(42) Bruder, A. H.; Fay, R. C.; Lewis, D. F.; Sayler, A. A. *J. Am. Chem. SOC.* **1976, 98, 6932.**

⁽³⁴⁾ Kowala, **C.;** Wunderlich, J. **A.** *Acta Crystallogr., Secr. B* **1976,** *B32,* **820.**

Figure 3. Model **in** perspective to illustrate the packing of *(q-* C_5H_5)₂ZrCl[S₂CN(C_2H_5)₂] in the crystal. The contents of one unit cell are viewed normal to the (001) plane.

The ten Zr-C distances are quite uniform **(2.493 (5)-2.532 (6) A;** cf. Table 111) and are typical of Zr-C distances in other *n*-cyclopentadienyl-zirconium structures.^{5,10,35,36,41-44} The distances from the Zr atom to the centroids of the C_5H_5 rings are **2.222 (6)** and **2.216 (7) A.**

Bond lengths and angles within the dithiocarbamate ligand (Table IV) are in agreement with values found in other dithiocarbamate structures.^{42,45-55} The bite of the ligand (2.865) (2) Å) agrees well with values reported for $(\eta$ -C₅H₅)Zr- $[S_2CN(CH_3)_2]_3$ ⁴² Delocalized π bonding in the S_1S_2CN portion of the ligand is indicated by the C-N **(1.317** A) and C-S (average **1.710 A)** distances, which are intermediate between single-bond and double-bond distances (C-N, 1.47 **A;** C=N, **1.27 A;** C-S, **1.81 A;** *C=S,* **1.61 A).56** Accordingly, the $S_1S_2CNC_1C_3$ portion of the dithiocarbamate ligand (cf. Figure **1)** is nearly planar, the mean and maximum displacements of these atoms from the mean plane being **0.029** and 0.047 Å, respectively (cf. Table VI). Such departures from planarity as are observed correspond to a slight twisting of the ligand about the C-N bond; the dihedral angle between

 (43) Sim, G. A.; Bush, M. A. J. *Chem. SOC. A* **1971, 2225.**

- (44) Anderson, **S.** J.; Brown, D. **S.;** Finney, K. J. *J. Chem. Soc., Dalton Trans.* **1979, 152.**
- (45) (a) Coucouvanis, D. *Prog. Inorg. Chem.* **1970,** *I!,* **233.** (b) Eisenberg, R. *Ibid.* 1970, 12, 295. (c) Coucouvanis, D. *Ibid.* 1979, 26, 301.
Lewis, D. F.; Fay, R. C. *J. Am. Chem. Soc.* 1974, 96, 3843.
Lewis, D. F.; Fay, R. C. *Inorg. Chem.* 1976, 15, 2219.
-
- Dewan, J. C.; Kepert, D. L.; Raston, C. L.; Taylor, D.; White, A. H.; Maslen, E. N. J. *Chem. Soc., Dalton Trans.* **1973, 2082.** (48)
- (49) (a) Brennan, T. F.; Bernal, I. *Chem. Commun.* 1970, 138. (b) Brennan,
- T. F.; Bernal, I. *Inorg. Chim. Acta* 1973, 7, 283.
(a) Colapietro, M.; Vaciago, A.; Bradley, D. C.; Hursthouse, M. B.;
Rendall, I. F. J. Chem. Soc., Dalton Trans. 1972, 1052. (b) Colapietro, (50)
- M.; Domenicano, A.; Vaciago, A. Chem. Commun. 1968, 572.
(a) Healy, P. C.; White, A. H. J. Chem. Soc., Dalton Trans. 1972, 1163.
(b) Healy, P. C.; White, A. H.; Hoskins, B. F. Ibid. 1972, 1369. (c)
Newman, P. W. G.; White, (51)
- (52) **1975, 2051.**
- (53) (a) Pignolet, L. H. *Inorg. Chem.* 1974, 13, 2051. (b) Abrahamson, H.;
Heiman, J. R.; Pignolet, L. H. *Ibid.* 1975, 14, 2070.
(a) Ricard, L.; Martin, C.; Wiest, R.; Weiss, R. *Inorg. Chem.* 1975, 14, 2300. (b) Kopwillem, A
- (54)
- (55) Harreld, *C.* **S.;** Schlemper, E. *0. Acta Crysrallogr., Sect. B* **1964,** *827,* **1964.**
- Reference **32,** pp **224-229.**

Table **V.** Bond Lengths and Bond Angles in the n-Cyclopentadienyl Ligands^a

atoms	length, A	atoms	angle, deg
$C_{1a} - C_{2a}$	1.373(9)	$C_{sa}-C_{1a}-C_{2a}$	108.9(6)
C_{2a} - C_{3a}	1.392(8)	C_{1a} - C_{2a} - C_{3a}	107.6(5)
C_{3R} - C_{4R}	1.380(8)	C_{2a} - C_{3a} - C_{4a}	108.5(5)
$C_{4a} - C_{5a}$	1.398(8)	C_{3a} - C_{4a} - C_{5a}	107.9 (5)
$C_{5a} - C_{1a}$	1.394(9)	$C_{4a} - C_{5a} - C_{1a}$	107.0 (5)
av $C-C^b$	1.387(8,9,14)	av C-C-C b	108.0 (5,6,10)
$C_{1b} - C_{2b}$	1.358(15)	C_{sb} - C_{1b} - C_{2b}	109.7(8)
$C_{ab}-C_{ab}$	1.397(14)	C_{1b} - C_{2b} - C_{3b}	105.9(7)
C_{ab} - C_{ab}	1.336 (10)	C_{2b} - C_{3b} - C_{4b}	108.4(7)
$C_{ab}-C_{sb}$	1.375 (10)	C_{ab} - C_{ab} - C_{sb}	108.4(6)
$C_{sb} - C_{1b}$	1.345 (11)	C_{ab} - C_{sb} - C_{tb}	107.5(7)
av C–C ^b	1.362 (12,19,35)	av C-C- C^b	108.0 (7,10,21)

Numbers in parentheses are estimated standard deviations in the last significant figure. b The numbers in parentheses following each averaged value are the root-mean-square estimated standard deviation for an individual datum and the mean and maximum deviations from the average value.

Table VI

Least-Squares Mean Planes of the Form $AX + BY + CZ = D^a$

plane						
no.		atoms	A	В	C	D
1	Zr, Cl, S_1, S_2				-0.6563 0.7534 -0.0417 2.5362	
		S_1, S_2, C, N, C_1, C_2			-0.5749 0.8168 -0.0491 3.5949	
$\begin{array}{c} 2 \\ 3 \\ 4 \end{array}$		C_{1a} , C_{2a} , C_{3a} , C_{4a} , C_{5a}	-0.7863 0.5280		0.3208 3.5823	
		C_{1b} , C_{2b} , C_{3b} , C_{4b} , C_{5b} -0.4088 0.8214 -0.3977 0.8608				
		Atoms and Their Displacements from Planes, A				
	plane 1	Zr, 0.001; Cl, -0.001 ; S ₁ , 0.000; S ₂ , -0.001 ; $C, -0.083; N, -0.210^5$				
	plane 2	S_1 , -0.041; S_2 , 0.033; C, 0.007; N, 0.011; C_1 , 0.037; C_2 , -0.047; Zr , -0.231				
	plane 3	C_{1a} , 0.017; C_{2a} , -0.015; C_{3a} , 0.007; C_{4a} $0.004; C_{\rm sa}, -0.013$				
	plane 4	C_{1b} , -0.012; C_{2b} , 0.015; C_{3b} , -0.013; C_{ab} , 0.005; C_{sb} , 0.005				

a *X, Y,* and *Z* are orthogonal coordinates measured in A along *a,* b, and c^* , respectively, of the crystallographic coordinate system.
b A displacement in the characteristic system. A displacement in the negative direction is toward C_5H_5 ring b.

the S_1S_2CN and CNC_1C_3 mean planes is 3.4°. The terminal methyl groups are located on opposite sides of the plane defined by the $S_1S_2CNC_1C_3$ portion of the ligand. The Zr atom is displaced from this plane by **0.23 1 A,** which implies a small folding of the chelate ring about the S₁₁.S vector; the dihedral angle between the $S_1S_2CNC_1C_3$ plane and the ZrS_1S_2 plane is 5.9°. The chelate ring is folded so as to bend the uncoordinated part of the ligand in the direction of C_5H_5 group b. Both the ring folding and the ligand twisting can be rationalized in terms of a short intermolecular contact $(C_4 \cdots C_4, 3.58)$ **A)** between methyl groups of adjacent molecules. The only other intermolecular contact that is appreciably less than the sum of the van der Waals radii involves a cyclopentadienyl and a methylene carbon atom $(C_{3b} \cdots C_3, 3.53 \text{ Å})$. A packing diagram is presented in Figure **3.**

Bond lengths and angles within the cyclopentadienyl ligands are listed in Table V. Carbon-carbon distances are quite uniform in ligand a **(1.373-1.398 A)** but somewhat more varied in ligand b **(1.336-1.397 A).** However, this variation is not considered significant in view of the larger esd's on the C-C distances in ring b (Table V) and the highly anisotropic thermal parameters observed for the carbon atoms in ring b (Table **11).** The averaged C-C bond length for both rings **(1.375 A)** is in good agreement with corresponding values obtained for other **q-cyclopentadienyl-zirconium** structures.^{5,10,35,36,41-44}

Kinetics of Methyl Group Exchange in $(\eta$ **-C₅H₅)₂ZrCl-** $[S_2CN(CH_3)_2]$. ¹H NMR spectra of $(\eta$ -C₅H₅)₂ZrCl[S₂CN-

Figure 4. Methyl proton resonances of $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂], \sim 0.1 M in CD₂Cl₂, at 300 MHz. The peak marked with an \times is due to an unidentified impurity.

Figure 5. Arrhenius plot for methyl group exchange in $(\eta C_5H_5$)₂ $ZrCl[S_2CN(CH_3)_2]$.

 $(CH₃)₂$] in CD₂Cl₂ solution have been recorded at 300 MHz in the temperature range -58.6 to $+71.1$ °C. In the slowexchange limit, this complex exhibits two closely **spaced** methyl proton resonances of equal intensity (cf. Figure **4),** consistent with the bent metallocene structure found for solid (η - C_5H_5)₂ZrCl[S₂CN(C₂H₅)₂] (Figure 1). The two methyl resonances coalesce at \sim 16 °C to give one line, which sharpens with increasing temperature. **A** single, sharp cyclopentadienyl proton resonance is observed at all temperatures.

Rates of exchange of methyl groups between the two inequivalent sites of the bent metallocene structure were determined **by** total line-shape analysis as described in the Experimental Section. Rate constants and characteristic lineshape parameters are listed in Table VI1 along with Arrhenius and Eyring activation parameters, which were obtained from the least-squares straight lines of a log **k** vs. **1/T** plot (Figure 5) and a log (k/T) vs. $1/T$ plot. The barrier to exchange is \sim 16 kcal/mol, and the rate constant at 25 °C is 8.6 s⁻¹. Estimates of error on the activation parameters are relatively large because the small frequency separation between the two methyl resonances $(2.05-2.26 \text{ Hz}, \sim 0.007 \text{ ppm}, \text{ in the coa-}$ lescence region) severely restricts the temperature range over which reliable rate constants can be determined. In 300-MHz ¹H NMR spectra of $(\eta$ -C₅H₅ $)$ ₂ZrCl[S₂CN(CH₃)₂] in CHClF₂ solution, the methyl resonances remain unresolved at temTable **MI**

Kinetic Data for Exchange of Methyl Groups in $(\eta$ -C₅H₅), Z_{rC1}[S₂CN(CH₃), $]$ ^a

temp,		line widths, Hz					
°C	$W_{1/4}$	$w_{1/2}$	$W_{3/4}$	$\delta \nu$, \rm{F} Hz	r^d	k, s^{-1}	
22.9	3.09	1.84	1.06			7.0	
19.9	3.60	2.23	1.39			5.3	
17.8	3.90	2.59	1.84			4.2	
16.7	3.96	2.79	2.09			3.9	
15.6	4.07	2.93	2.26	0.75	1.02	3.6	
14.5				1.10	1.05	3.2	
13.4				1.42	1.12	2.8	
12.4				1.89	1.18	2.2	
11.4				1.56	1.29	2.5	
10.3			0.95	1.86	1.43	2.0	
Activation Parameters ^e							
E_a , kcal/mol		16.5 ± 2.0	T_c , $^{\circ}$ C		16		
log A		13.0 ± 1.5		$\Delta G^+(T_c)$, kcal/mol		16.17 ± 0.08	
ΔH^{\ddagger} , kcal/mol		15.9 ± 2.0		$\Delta G^+(25\text{ °C})$, kcal/mol		16.18 ± 0.08	

 ΔS^{\ddagger} , **eu** -1.0 ± 6.8 $k(25 \text{ °C}), s^{-1}$ 8.6 plitude in the absence of exchange, $(w_{1/2})_0$, varies from 0.80 Hz at 22.9 "C *to* 0.83 Hz at 10.3 "C. The frequency separation in the absence of exchange, *(Su),,* varies from 2.05 **Hz** at 22.9 "C to 2.26 Hz at 10.3 "C. Ratio of the maximum amplitude to the amplitude at the central minimum. e The uncertainties in the activation parameters are randam errors estimated at the 95% confidence level. f Coalescence temperature. $a \sim 10^{-1}$ M in CD₂Cl₂. ^b The line width at half-maximum am-

peratures down to -150 °C! The near-degeneracy in the chemical shifts is surprising in view of the approximately **10** times larger shifts $({\sim}0.07$ ppm) for the methyl resonances of $(\eta$ -C₅H₅)Zr[S₂CN(CH₃)₂]₃.⁴²

Possible mechanisms for methyl group exchange in $(\eta C_5H_5$)₂ZrCl[S₂CN(CH₃)₂] are outlined in Figure 6. These include (a) dissociation of the dithiocarbamate ligand, (b) dissociation of Cl⁻ to give a symmetrical four-coordinate intermediate, (c) a digonal twist of the entire planar dithiocarbamate ligand about its twofold axis, (d) chloride migration involving a trigonal-bipyramidal transition state, (e) Zr-S bond rupture to give a four-coordinate intermediate, followed by rotation of the dangling ligand about the $Zr-S$ and/or $C-S$ bonds and subsequent reattachment of the uncoordinated **S** atom at the other sulfur coordination site, *(f)* Zr-S bond rupture followed by rotation about the $C^{-1}N$ partial double bond and subsequent reattachment of the uncoordinated **S** atom, and (g) rotation about the C ∇N bond without Zr-S bond rupture. One can, of course, envision a continuum of mechanisms intermediate between *(f)* and (g) that involve rotation about the C⁻⁻N bond accompanied by more or less $Zr-S$ bond stretching.

Dissociative mechanisms a and b are ruled out by the following ¹H NMR results obtained at 34 °C and 90 MHz: (1) the spectrum of a CD_2Cl_2 -CD₃CN (1:1 v/v) solution containing both $(\eta$ -C₅H₅ $)$ ₂ZrCl[S₂CN(CH₃ $)$ ₂] (0.035 M) and Na[S,CN(CH,),] **(0.093** M) showed separate methyl resonances for each compound; (2) the spectrum of a CD_2Cl_2 solution of $(\eta$ -C₃H₅)₂Z_{rCl}[S₂SN(CH₃)₂] and $(\eta$ - C_5H_5 ₂ZrBr[S₂CN(CH₃)₂] (both \sim 0.1 M) showed separate methyl resonances for each complex. In each case, the line width of the methyl resonance of $(\eta$ -C₅H₅)₂Z_rCl[S₂CN- $(CH₃)₂$] (0.62 Hz) was essentially the same as that in the absence of added $Na[S_2CN(CH_3)_2]$ or $(\eta$ -C₅H₅)₂ZrBr-[S,CN(CH,),]. **These** experiments show that dithiocarbamate ligand exchange and halide ligand exchange are slow on the NMR time scale at a temperature 18 ^oC above the coalescence temperature for methyl group exchange. Therefore, the mechanism of methyl group exchange cannot involve complete dissociation of dithiocarbamate or chloride ions. The absence of any appreciable equilibrium concentration of ions in di-

Table **VIII. Kinetic Data for Exchange of Methyl Groups in N,N-Dimethyldithiocarbamate Compoundsa**

			ΔG^{\ddagger} (25 °C),				
compd	solvent	$k(25^{\circ}C), s^{-1}$	kcal/mol	ΔH^+ , kcal/mol	ΔS^+ , eu	ref	
$CH, SC(S)N(CH_3)$,	n -hexane	107	14.7 ± 0.2	9.7 ± 0.6	-17 ± 2	58 ^b	
	n -hexane		14.7	12.5	-7	59	
$[SC(S)N(CH_3)_2]_2$	CD,CI,	16	15.8	17.8	7 ± 4	60	
$(\eta$ -C,H ₅),ZrCl[S ₂ CN(CH ₃) ₂]	CD,CI,	8.6	16.2 ± 0.1	15.9 ± 2.0	-1 ± 7	this work	

^a Uncertainties in the activation parameters for CH₃SC(S)N(CH₃)₂ and $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] are random errors estimated at the 95% confidence level. ^b The values listed were calculated from kine

Figure *6.* Possible mechanisms for methyl group exchange in **(7-** C5H5)2ZrCl[S2CN(CH,)2]. *AU* of **these** mechanisms exchange methyl groups **1** and **2** between inequivalent sites a and b. Microscopic reversibility requires that the intermediate in mechanism e must form by rupture of either Zr-S bond.

chloromethane solutions is indicated by a molar conductance of <7.9 \times 10⁻³ Ω^{-1} cm² mol⁻¹ for a 5.7 \times 10⁻³ M solution.

The digonal twist and chloride migration mechanisms, (c) and (d) in Figure 6, are unlikely because the transition states are even more crowded than the already congested bent metallocene structure. For example, if the observed Zr-Cl, $Zr-S$, and $Zr-C$ bond lengths are maintained in the trigonal-bipyramidal transition state of mechanism d, the C---Cl and C-.S nonbonded contacts would be **0.3-0.4 A** shorter than in the observed structure and **0.5-0.7 A** less than the sum of the van der Waals radii. Extended Huckel calculations on the model compound $(\eta$ -C₅H₅)₂ZrCl(S₂CH) (vide infra) give calculated barriers for mechanisms c and d of 70 and *95* kcal/mol, respectively. These barriers, which are more than **4** times the observed barrier, are due to both steric and electronic effects.

Mechanisms e and f are attractive because Zr-S bond rupture relieves steric crowding in the coordination group and because the unusually long bond to the **S** atom in the lateral coordination site $(Zr-S_2$ in Figure 1) should be especially susceptible to bond rupture. Indeed we have considered the possibility that $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] might exist in solution as a four-coordinate complex that contains a monodentate dithiocarbamate ligand. This, however, is unlikely since solid-state and dichloromethane-solution infrared spectra of $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] are essentially identical; for solid and solution, one observes a single $\nu(C-S)$ band, characteristic of bidentate dithiocarbamate.⁵⁷ Moreover, solidstate infrared spectra of $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] and $(\eta$ -C₅H₅)₂ZrCl[S₂CN(C₂H₅)₂] are similar,¹⁵ and the solid-state structure of the N,N-diethyl derivative has been shown, in the present work, to contain bidentate dithiocarbamate. 'H NMR spectroscopy of CD_2Cl_2 solutions of $(\eta$ -C₅H₅)₂ $ZrCl[S₂CN (CH₃)₂$] at 300 MHz detects only one isomer at all temperatures investigated. Taken together, the IR and NMR evidence indicate that the five-coordinate, chelated bent metallocene is the major species in dichloromethane solution and that the four-coordinate, ring-opened isomer is present in no more than small, undetectable concentrations. The ring-opened isomer, however, could be present as a low-concentration reaction intermediate.

Strong evidence for a mechanism involving C^{-N} bond rotation, (f) or (g) in Figure 6, comes from a comparison of kinetic data for $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] with kinetic data for methyl N,N-dimethyldithiocarbamate^{58,59} and N,- N, N', N' -tetramethylthiuram disulfide⁶⁰ (cf. Table VIII). The methyl ester and thiuram disulfide exhibit a similar exchange of N-methyl groups, with values of k and ΔG^* at 25 °C that differ from those for $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] by factors of ≤ 10 and ≤ 1.5 kcal/mol, respectively. Values of ΔH^* and ΔS^* (Table VIII) vary more widely, but it is the rate constant and ΔG^* in the coalescence region that are the most accurately determined kinetic parameters. In the case of the organic derivatives, the kinetic process must involve $C\rightarrow N$ bond rotation. **A** similar process is expected in the zirconium complex.

The slightly higher barrier for methyl group exchange in $(\eta$ -C₅H₅)₂ZrCl[S₂CN(CH₃)₂] relative to the barriers in the organic derivatives can be rationalized in terms of mechanism for g. When the dithiocarbamate ligand is attached to an electropositive metal like Zr(IV), resonance structure **4c** will

be relatively more important, and resonance structures **4a** and **4b** relatively less important, than in the organic derivatives. Thus, a higher barrier to C^{-N} bond rotation is expected in the zirconium complex, especially if the dithiocarbamate ligand remains bidentate as in mechanism g. Experimental evidence

⁽⁵⁷⁾ Bonati, F.; Ugo, R. *J. Organomet. Chem.* 1967, *10*, 257.
(58) Holloway, C. E.; Gitilitz, M. H. *Can. J. Chem.* 1967, 45, 2659.
(59) Lemire, A. E.; Thompson, J. C. *Can. J. Chem.* 1970, 48, 824.
(60) Edgar, B. L.; Du

Chem. SOC. **1973,** *95,* **1125.**

for a higher barrier to C^{-N} rotation in bidentate dithiocarbamate than in monodentate dithiocarbamate is provided by an NMR study of $Rh[P(C_6H_5)_3][S_2CN(CH_3)_2]_3^{61}$ This complex exhibits five methyl proton resonances of relative intensity 2:1:1:1:1 at 27 \textdegree C, consistent with an octahedral structure containing one monodentate dithiocarbamate ligand cis to the $P(C_6H_5)$ ₃ group and two bidentate dithiocarbamate ligands. The resonance of relative intensity 2 is reasonably assigned to the methyl groups of the monodentate dithiocarbamate, which are exchanging rapidly due to rapid $C\neg N$ bond rotation in the monodentate ligand. Rotation about the C_{th} bond in the bidentate ligands is slower; all five methyl resonances do not coalesce until 72 °C.

If methyl group exchange in $(\eta$ -C_sH₅)₂ZrCl[S₂CN(CH₃)₂] occurs by mechanism f, the barrier to exchange will be increased beyond that needed for C-N bond rotation in the monodentate ligand by the free energy difference between the four-coordinate, ring-opened isomer and the five-coordinate, chelated isomer. The latter free energy difference must be at least 1.5 kcal/mol, or else the ring-opened isomer would be observed by NMR. However, extended Hückel calculations (vide infra) indicate no significant energy difference between the ring-opened and chelated isomers. Thus the increase in the barrier height due to Zr-S bond rupture may be quite modest. The ease of metal-ligand bond rupture in five-coordinate zirconocene complexes is illustrated by a recent study of the analogous ylide complex $(\eta$ -C₅H₅)₂ZrCl[(CH₂)₂P-(CH,),] **.62** This compound undergoes exchange of the inequivalent methylene groups $(\Delta G^*(50 \text{ °C}) \approx 15.5 \text{ kcal/mol})$ by a proposed mechanism that involves Zr-C bond rupture and formation of the symmetrical four-coordinate intermediate $(\eta$ -C₅H₅)₂ZrCl[(CH₂)P(CH₂)(CH₃)₂]. Also relevant here is the solid-state structure of $(\eta$ -C₅H₅)₂ $ZrCl[CH_2P(C_6H_5)]$, \qquad | α_{π} which exists as the four-coordinate ring-opened isomer; the phosphinomethyl C atom is attached to the Zr atom, but the Zr and P atoms avoid each other.⁶³

The following conclusions may be drawn in summary of our discussion relating to the mechanisms outlined in Figure 6. (1) Dissociative mechanisms a and b can be ruled out on experimental grounds. (2) Polytopal rearrangement mechanisms c and d are unlikely for steric reasons and can be discarded on the basis of extended Hiickel calculations. (3) Bond-rupture mechanism e cannot be ruled out since metalligand bond rupture should be a facile process in five-coordinate zirconocenes; however, this mechanism is not needed to account for methyl group exchange in $(\eta$ -C₅H₅),ZrCl- $[S_2CN(CH_3)_2]$ because comparison of kinetic data for the zirconium complex and related organic dithiocarbamates indicates that the observed rate process almost certainly involves rotation about the C=N bond. **(4)** Extended Hiickel calculations confirm the ease of Zr-S bond rupture in $(\eta C₅H₅$, $ZrCl(S₂CNR₂)$ systems, thus favoring mechanism f over mechanism g. However, the presently available experimental data do not distinguish between these two possibilities. In an effort to clarify this point, we plan to investigate the structure and dynamics of other $(\eta$ -C₅H₅)₂ZrX[S₂CN(CH₃)₂] complexes, where the size and electronic properties of the monodentate ligand X will be varied.

A. **Equilibrium Geometry.** The electronic structure of *(a-* C_5H_5)₂ML_n complexes has been thoroughly analyzed in terms of interaction of the bent $(\eta$ -C₅H₅)₂M moiety with the *n* ligands L.² In C_{2v} symmetry, the $(\eta$ -C₅H₅)₂M fragment has three low-lying orbitals 1a₁, b₂, and 2a₁ (Figure 7) and two high-**Theoretical Analysis of** $(\eta$ **-C₅H₅)₂ZrCl(S₂CNR₂) Complexes.**

Figure 7. Interaction diagram for $(\eta$ -C₅H₅)₂ZrH⁺ (left) and $(\eta$ - $C_5H_5)_2ZrCl^+$ (right).

Figure 8. Contour plots of the a'_τ and a'_σ orbitals for $(\eta$ -C₅H₅)₂ZrH⁺ (a, b) and $(\eta$ -C₅H₅)₂Z_rCl⁺ (c, d). The values of the wave function at the contours **are** *d0.20,* ***0.10, f0.055,** *f0.025,* and *0.010.

lying orbitals b_1 and a_2 . The b_1 and a_2 orbitals are destabilized by strong interaction with the π orbitals of the η -C₅H₅ rings; only the three low-lying orbitals are capable of bonding with additional ligands L. Since these orbitals have their extension in the mirror plane that bisects the (centroid C_5H_5)-Zr-(centroid C_5H_5) angle, the ligands L lie in this mirror plane. For a d^o metal, a maximum of three ligands can be accommodated.

The geometry of an $(\eta$ -C₅H₅)₂Z_{rCl}(S₂CNR₂) complex is conveniently investigated by considering the interaction of $(\eta$ -C_sH_s)₂ZrCl⁺ and S₂CNR₂⁻ fragments. The valence orbitals of an $(\eta$ -C₅H₅)₂ZrL fragment are easily derived from the valence orbitals of $(\eta$ -C₅H₅)₂Z_r and L fragments (cf. Figure 7). If the ligand L is mainly a σ donor, for example H⁻, the l_a orbital of $(\eta$ -C₅H₅ $)$ ₂Zr is only slightly perturbed by L since L is situated very near the nodal plane of $1a_1$ (cf. Figure 8a). Because of slight mixing with the b_2 and $2a_1$ orbitals, the $1a_1$ orbital increases its extension toward the vacant site of *(a-*

⁽⁶¹⁾ Davis, R.; Hill, **M. N. S.; Holloway, C. E.; Johnson, B. F. G.; Al-Obaidi,** *K.* **H.** *J. Chem.* **Soc.** *A* **1971,994.**

⁽⁶²⁾ Gell, K. I.; Schwartz, J. *Inorg. Chem.* **1980, 19, 3207. (63) Schore, N. E.; Hope, H.** *J. Am. Chem.* **SOC. 1980, 102,4251.**

Figure 9. Contour plots of the b_2 and a_1 orbitals of S_2CH^- . The contour values are the same as in Figure **8.**

Figure 10. Interaction diagram for the chelated isomer of $(\eta C_5H_5$)₂ZrCl(S₂CH).

 C_5H_5)₂ZrL, i.e. the site of the second ligand in $(\eta$ -C₅H₅)₂ZrL₂. Although the $(\eta$ -C₅H₅)₂Z_rL fragment has no symmetry other than the bisecting mirror plane, it is evident from Figure 8a that the orbital of $1a_1$ parentage has definite π -type character with respect to the vacant site. This orbital will be called a'_r ; it is the LUMO of the $(\eta$ -C₅H₅)₂Z_rL fragment (cf. Figure 7). The second low-lying orbital results from strong mixing of the b_2 and 2a₁ orbitals, both of which overlap well with the σ orbital of the ligand L. As Figure 8b shows, this orbital has σ character with respect to the vacant site; it will be referred to as a'_{σ} . The hybridization of a'_{σ} toward the vacant site is the usual consequence of decreasing the antibonding Zr-L interaction by mixing in metal p orbitals.

If the ligand L is a π donor, for example Cl⁻, the a'_{π} orbital is raised in energy (cf. Figure **7)** because it has the proper local symmetry to interact with the ligand π orbital (cf. Figure 8c). On the other hand, the a'_{σ} orbital, whose contour plot is given in Figure 8d, is only slightly perturbed.

The valence orbitals of the dithiocarbamate ligand were obtained from extended Huckel calculations on the simplified model, S₂CH⁻. Although all calculations were done with S_2CH^- , we have verified that S_2CH^- and $S_2CNH_2^-$ have very similar valence orbitals. The three highest occupied valence orbitals are a_1 , a_2 , and b_2 . The a_2 orbital is the out-of-phase combination of the $p\pi$ orbitals on the sulfur atoms. The a_1 and b_2 orbitals are, respectively, in-phase and out-of-phase combinations of the lone-pair orbitals on the sulfur atoms. These two orbitals lie in the plane of the S_2CH^- ligand; contour plots are shown in Figure 9. The crucial orbital is the b_2

orbital. It has the proper local symmetry to interact with the a' , orbital of the $(\eta$ -C₅H₅)₂ZrCl⁺ fragment. By matching the nodal planes of the two frontier fragment orbitals, a'_{τ} (Figure 8c) and b_2 (Figure 9a), one obtains a geometry that is close to the experimental structure. This geometry allows, in addition, nice overlap between the a', orbital of the *(q-* C_5H_5)₂ZrCl⁺ fragment (Figure 8d) and the a_1 orbital of the $S₂CH⁻$ ligand (Figure 9b). These interactions are summarized in the interaction diagram of Figure 10; the a_1 and b_2 orbitals of S_2CH^- are both stabilized by the empty orbitals of the $(\eta$ -C₅H₅)₂ZrCl⁺ fragment. The S₂CH⁻ a₂ orbital behaves differently. It is destabilized by occupied orbitals on chlorine and the η -C₅H₅ rings. In fact, the a₂ orbital becomes the HOMO of the complex.

With use of extended Hückel calculations,⁶⁴ the geometry of $(\eta$ -C₅H₅ $)$ ₂ZrCl(S₂CH) **5** was optimized as a function of the

angles α and ω , which define the orientation of the Zr-Cl and Zr-C vectors with respect to the C_2 axis of the $(\eta$ -C₃H₅)₂Zr fragment. **C,** symmetry was assumed, and other structural parameters were fixed at the values given in the Appendix. The optimum structure was found for $\alpha = 68.5^{\circ}$ and $\omega = 39^{\circ}$, which puts the $Zr-S_1$ bond 7° off the C_2 axis in the direction shown in 5. The calculated values of α and ω agree well with the observed values of $\alpha = 66.3^{\circ}$ and $\omega = 38.9^{\circ}$. Also in agreement with the observed structure are calculated bond orders for $Zr-S_1$ (0.446) and $Zr-S_2$ (0.431), obtained by assuming equal Zr-S bond lengths. This is an indication that $Zr-S_1$ should be shorter than $Zr-S_2$.

The geometry of $(\eta$ -C₅H₅)₂ZrCl(S₂CNR₂) complexes is not surprising in view of the structure of the isoelectronic molecules $(\eta$ -C₅H₅)₂Nb(CH₃)(C₂H₄)⁶⁵ and $(\eta$ -C₅H₅)₂Z_r(COCH₃).¹⁰ For instance, $(\eta$ -C₅H₅)₂Nb(CH₃)(C₂H₄) may be regarded as a d^2 complex that contains a neutral olefin or a d^0 complex that contains a doubly negative olefin. No matter how the electrons are counted, the major bonding interaction involves the metal fragment a'_{τ} orbital (filled if d^2 , empty if d^0) with the olefin π^* orbital (empty if the metal is d^2 , filled if the metal is d⁰). The olefin π^* orbital takes the place of the S₂CH⁻ b₂ orbital in $(\eta$ -C₅H₅)₂Z_rCl(S₂CH); indeed the spatial analogy between these two orbitals is evident from the contour plot in Figure 9, as is the analogy between the olefin π and the S₂CH⁻ a_1 orbitals. A similar orbital analysis for $(\eta$ -C₅H₅)₂Zr- $(CH₃)(COCH₃)$ has been carried out by Hofmann and coworkers.66

B. Metal-Centered Rearrangements. Extended Hiickel calculations on the transition states of the digonal twist and chloride migration mechanisms, mechanisms c and d in Figure 6, indicate that these nondissociative rearrangement pathways can be ruled out on the basis of the very high energy of the transition states. Both steric and electronic effects cooperate in producing the high barriers. The digonal twist transition state, obtained by rotating the S_2CH^- ligand by 90 \degree about its twofold axis, has very close contacts between the **S** atoms and the cyclopentadienyl C atoms. In addition, the *(q-* C_5H_5)₂ZrCl⁺ fragment has no low-lying empty orbitals that

⁽⁶⁴⁾ (a) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. (b) Hoffmann, R.; *i* **Lipscomb, W. N.** *Ibid.* **1962, 36, 2179; 1962, 37, 2872.**

⁽⁶⁵⁾ Guggenberger, L. J.; Meakin, P.; Tebbe, F. N. *J. Am. Chem. Soc.* **1974, 96, 5420.**

Figure 11. A two-dimensional section of the potential energy surface for $(\eta$ -C₅H₅)₂Z_rCl(S₂CH). *E*(α , β , γ) is plotted for $\alpha = 60^{\circ}$. The contours between **0.2** and 1.0 eV are at intervals of 0.1 eV; those above 1.0 eV are at intervals of 0.5 eV.

can interact with the S_2CH^- HOMO, which is now of b_1 symmetry, *6.* The barrier to digonal twisting depends on the

(centroid C_5H_5)-Zr-(centroid C_5H_5) angle, but the minimum barrier was found to be 70 kcal/mol. An even higher barrier (95 kcal/mol) was calculated for the chloride migration mechanism. The trigonal-bipyramidal transition state is destabilized by very short cyclopentadienyl C--Cl and C--S contacts and also by unfavorable electronic effects. The e' metal orbitals do not interact strongly with the e' symmetryadapted combination of ligand orbitals **7** because the metal

6

d orbitals have two nodes while the ligand combinations have one node.67 Consequently, bonding in the equatorial plane is weak.

The ease of Zr-S bond rupture in $(\eta$ -C₅H₅)₂ZrCl(S₂CH) was investigated by calculating the potential energy surface for interconversion of the five-coordinate, chelated isomer and the four-coordinate, ring-opened isomer. The energy was calculated as a function of the angular parameters β and γ for a series of values of the angle α ; α , β , and γ are defined in **8.** In order to reduce the number of degrees of freedom, we kept the remaining angles and the bond distances constant at the values given in the Appendix. A two-dimensional section of the potential energy surface, $E(\alpha, \beta, \gamma)$ for $\alpha = 60^{\circ}$, is presented in Figure 11. Two minima are apparent: one for the chelated structure ($\beta = 15^{\circ}$, $\gamma = 90^{\circ}$); the other for a ring-opened structure $(\beta = 42^{\circ}, \gamma = 150^{\circ})$, corresponding to a Zr_...S₂ distance of 4.8 Å). The surface is especially flat in

the region of the second minimum, and the geometry of the ring-opened structure is not precisely determined.

The positions of the Cl atom and the S_2CH^- ligand are strongly correlated. The chelated structure is stable only for large values of α , while the ring-opened structure becomes increasingly stable as α decreases. Analysis of two-dimensional sections of the potential energy surface as a function of α allows the optimum geometry of the ring-opened structure to be located around $\alpha = 45^{\circ}$, $\beta = 50^{\circ}$, $\gamma = 150^{\circ}$. Again, the location of the minimum is approximate because the surface is very flat. For $\alpha = 45^{\circ}$, there is no longer a minimum for the chelated structure. The Cl-Zr-S₁ angle in the ring-opened structure *(95')* compares nicely with typical L-M-L angles in d⁰ $(\eta$ -C₅H₅)₂ML₂ complexes (94-97°).⁵

The most striking feature of the ring-opened structure is the very large angle (150°) at sulfur atom $S₁$. Ordinarily, a dicoordinated sulfur atom prefers a more acute angle, usually around 90°. A similar distortion has been noted in *(7-* C_5H_5)₂ZrCl[CH₂P(C_6H_5)₂] (9) where the observed angle at

the carbon atom is **130°.63** Two reasons are suggested for such a large angle. First, as the angle at S₁ becomes more obtuse, the lone pair on S_1 has more p character and less s character; this leads to an optimum match between the S_1 component of the ligand b_2 orbital and the a'_r orbital of the $(\eta C_5H_5$ ₂ZrCl⁺ fragment, **10**. Second, a large angle at S_1 avoids

a strong antibonding overlap between a'_τ and the S_2 component of the ligand b_2 orbital. The total $Zr-S_2$ bond order in 10 is negative, although small (-0.007). In the chelated structure, the interaction of the a' , and b_2 orbitals is in phase at both S_1 and S_2 , 11. The difference in the $Zr-S_2$ interaction (antibonding in **10,** bonding in **11)** is accompanied by a change in the $Zr-S_1$ bond type $(\pi$ type in 10, σ type in 11). The antibonding interaction between Zr and $S₂$ is relieved in the trans conformer **12;** however, **12** was found to be isoenergetic with the cis conformer **8.**

An interaction diagram for the ring-opened isomer is shown in Figure 12. Interaction between the a' , and b_2 orbitals is relatively weak since the interaction involves a π -type bond. The b_2 orbital is weakly stabilized, and the a'_r orbital is only weakly destabilized. A rather small HOMO-LUMO gap results (1.6 eV), which suggests that the ring-opened isomer may be susceptible to reduction.⁶⁸ Facile reduction of $(η$ - C_5H_5)₂ZrCl[CH₂P(C₆H₅)₂] has been reported.⁶³

The activation energy for interconversion of the chelated and ring-opened isomers of $(\eta$ -C₅H₅)₂ZrCl(S₂CH) is certainly very small. When α is kept constant at 60° (cf. Figure 11), our calculation gives an activation energy of less than 10 kcal/mol. Allowing α to vary simultaneously with β and γ decreases the activation energy. In fact, there is a pathway leading from the optimized chelated structure to the optimized ring-opened structure with no activation energy if α , β , and γ are varied synchronously. (Our optimized ring-opened structure is more stable than the optimized chelated structure by 10 kcal/mol.) This absence of activation energy is probably due to the known weakness of the extended Huckel method in dealing with changes in bond length. No changes in the relative energies of the chelated and ring-opened isomers were found when the S_2CH^- ligand was replaced by $S_2CNH_2^-$. Despite the above-mentioned weakness of the extended Huckel method, one can conclude that interconversion of the chelated and ring-opened isomers should be a facile equilibrium process.

One way to tune this equilibrium is to vary the nature of the ligand L on the $(\eta$ -C₅H₅)₂Z_rL fragment. We have seen previously that π -donor L groups destabilize the fragment a'_{π} orbital (cf. Figure 7). This leads to a decrease in the a'_{π} -b₂ (S_2CH^-) interaction, which is so important in stabilizing the chelated structure (cf. Figure 10). A calculation on $(\eta C_5H_5$ ₂ $ZrH(S_2CH)$ shows that the chelated structure is relatively more stable (i.e. relative to the ring-opened structure) for $(\eta$ -C₅H₅)₂ZrH(S₂CH) than for $(\eta$ -C₅H₅)₂ZrCl(S₂CH). A related experimental result,⁶² in agreement with this picture

Table IX Parameters for Extended Huckel Calculations

atom	orbital		H_{ii} , eV	
Zr	5s	1.9	-10.15	
	5p	1.85	-6.85	
	4d	4.08 $(0.6401)^a$	-12.1	
		1.64(0.5516)		
C1	3s	2.033	-26.3	
	3p	2.033	-14.2	
S	3s	1.817	-20.0	
	3p	1.817	-13.3	

a **Coefficients of the double-f 4d functions are given in parentheses.**

of the bonding, concerns the fluxionality of $(\eta$ -C₅H₅)₂ZrL-

^oC, by a proposed mechanism that involves formation of the ring-opened isomer **14,** while the hydride derivative is stereochemically rigid up to 85 °C. For $(\eta$ -C₅H₅)₂ZrCl[CH₂P- $(C_6H_5)_2$, the ring-opened isomer 9 is the stable structure.⁶³ In the case of $(\eta$ -C₅H₅)₂ZrL(S₂CNR₂) complexes, it appears that $Zr-L \pi$ bonding may not be sufficient to destabilize the chelated isomer; Cl⁻ is already a good π donor. It is possible that a bulky L group may be required to produce a stable monodentate attachment of the dithiocarbamate ligand.

Finally, we wish to comment on the relative merits of Zr-S bond rupture mechanisms e and f of Figure 6. Zr-S bond rupture by itself does not suffice to exchange the inequivalent dithiocarbamate methyl groups; bond rupture must be followed by rotation about one or more bonds. Rotation about the Zr-S bond is sterically hindered despite the large Zr-S-C angle in the ring-opened structure. Rotation about the C-S bond or simultaneous rotation about the C-S and Zr-S bonds is more likely. Ab initio calculations have given a barrier of 12 kcal/mol for rotation about the $C-S$ single bond in dithioformic acid HS-CH=S.⁶⁹ However, a higher barrier can be expected in $(\eta$ -C₅H₅)₂ZrCl(S₂CNR₂) complexes because of close contact in the transition state between an η -C₅H₅ ligand and the NR₂ group. Rotation about the C \leftarrow N bond (mechanism *f)* is free of steric hindrance, and it is this mechanism, or mechanism **g,** that is favored by the experimental data.

Acknowledgment. We wish to thank Greta Chang for assistance with the synthetic work and P. Hofmann for communicating results prior to publication. **M.E.S.** thanks Dow Chemical Co. for a fellowship. The X-ray diffractometer and 300-MHz NMR spectrometer used in this research were obtained with support from the National Science Foundation Instrumentation Program.

Appendix

The extended Hückel calculations were performed with the **ICON 8 program using the weighted** H_{ij} **formula⁷⁰ and standard** parameters for carbon and hydrogen. The parameters employed for Zr, C1, and **S** are given in Table **IX.** The following

⁽⁶⁶⁾ Hofmann, P., private communication.

^{(67) (}a) Hoffmann, R.; Howell, J. M.; Muetterties, E. L. *J. Am. Chem. Soc.* **1972,** *94,* **3047. (b) Rossi, A. R.; Hoffmann, R.** *Inorg. Chem.* **1975,** *14,* **365.**

⁽⁶⁸⁾ This point is analyzed in detail by Hofmann et al. in calculations on $(\tau$ -C₅H₅)₂ZrCl[CH₂P(C₆H₅)₂]: Hofmann, P.; Stauffert, P.; Schore, N. E. Chem. Ber. 1982, 115, 2153.

^{(69) (}a) Auberg, E.; Samdal, S.; Seip, H. M. *J. Mol.* **Szrucr. 1979,57,95. (b) Bak, B.; Neilsen, 0.; Svanholt, H.** *J. Mol. Spectrosc.* **1979, 75, 134.**

⁽⁷⁰⁾ Ammeter, J. H.; Burgi, H.-B.; Thibeault, J. C.; Hoffmann, R. *J. Am. Chem. Soc.* **1978,** *100,* **3686.**

distances and angles were kept fixed: Zr-Cl = 2.55 **A,** Zr-S = 2.72 **A,** Zr-(centroid of C,H,) = 2.22 **A,** cyclopentadienyl C-C = 1.40 **A,** C-H = 1.08 **A, C-S** = 1.71 **A,** S-C-S = 115.7°. The angle between the normals to the planes of the two η -C₅H₅ rings was set equal to 138°.

Registry No. $(\eta$ -C₅H₅)₂ZrCl[S₂CN(C₂H₅)₂], 66943-46-2; $(\eta$ - C_5H_5 ₂ZrCl[S₂CN(CH₃)₂], 66943-45-1.

Supplementary Material Available: A listing of structure factor amplitudes for $(\eta$ -C₅H₅)₂ZrCl[S₂CN(C₂H₅)₂] (10 pages). Ordering information is given on any current masthead page.

> Contribution from the Department of Chemistry, Texas A&M University, College Station, Texas 77843

Comparison of the Eight-Coordinate Structures of d^1 TaCl₄(dmpe)₂ and d^0 TaCl₄(dmpe)₂⁺

F. ALBERT COTTON,* LARRY R. FALVELLO, and ROBERT C. NAJJAR

Received June 9, *1982*

The structures of $[P(CH_3)_4][TaCl_4(dmpe)_2]_3Cl_4 \cdot 4(CH_3)_2S$ (1) and TaCl₄(dmpe)₂ (2) have been determined by X-ray crystallography to examine the structural effects of adding one d electron to the d⁰ cation TaCl₄(dmpe)₂+. The TaCl₄(dmpe)₂+ ion has a structure of the dodecahedral type previously found for similar Ta^V complexes; the bond lengths and angles are as follows: Ta-Cl, 2.430 (3) Å; Ta-P, 2.691 (5) Å; P-Ta-P, 72.1 (2)°; Cl-Ta-Cl, 145.4 (2)°. The neutral molecule, **2,** has a structure that is approximately square antiprismatic with the following bond lengths: Ta-CI, 2.505 [3] **A;** Ta-P, 2.653 [2] **A.** Compound **1** forms cubic crystals in the space group Zd3m with a unit cell edge of 16.726 (7) **A,** a cell volume of 4679 (6) \hat{A}^3 , and $Z = 2$. The Ta atoms reside on positions of $42m$ symmetry. Compound 2 forms orthorhombic crystals in the space group $P2_12_12$ with unit cell dimensions $a = 10.765$ (2) \AA , $b = 11.297$ (4) \AA , $c = 9.595$ (3) \AA , $V = 1167$ (3) $A³$, and $Z = 2$. The molecules have a crystallographic twofold axis of symmetry.

Introduction

Coordination number 8 can be considered uncommon only in a relative sense. There are, in fact, many examples of it, and several geometric forms are well-known.^{1,2} We are concerned here with a question that is simple in concept but rarely answerable experimentally: What will be the effect of adding one electron to a given eight-coordinate species on its structure? We were led to our particular study of this question in the following way.

In the course of preparing the new compound³ Ta₂Cl₆- $(dmpe)_2$, where dmpe represents $Me₂PCH₂CH₂PMe₂$, we isolated a very small amount of a beautifully crystalline yellow compound, **1. A** crystallographic study of this compound showed that it contains the $[TaCl_4(dmpe)_2]^+$ ion, which has a dodecahedral structure of the type previously reported' for several $[MX_4(diars)_2]^+$ ions with $M = Nb$ and Ta, $X = Cl$ and Br, and diars = o -(Me₂As)₂C₆H₄. In these structures the diars ligands span the positions marked X in Figure 1 and the four halide ions occupy the *Y* positions. The symmetries of these molecules are essentially D_{2d} although this is not crystallographically rigorous. In our $[TaCl₄(dmpe)₂]⁺$ ion crystallographic $\frac{32m}{2m}$ symmetry of the TaCl₄P₄ core was found.

Since the neutral, homologous compound $TaCl_4(dmpe)_2$ had already been reported,⁴ we recognized an opportunity to see what effects the presence of one d electron would have on the structure. It had previously been claimed⁵ from powder diffraction work that $NbCl_4(diars)_2$ retained the dodecahedral geometry of the $[NbCl_4(diars)_2]^+$ ion, but no quantitative information about bond lengths or bond angles was likely to be obtainable for $NbCl₄(diars)₂$ since it was reported³ to be impossible to find a solvent from which to recrystallize it.

We have been able to obtain the detailed crystal structure of $TaCl_4(dmpe)_2$ (2) and find that the geometry is not dodecahedral but square antiprismatic.

Experimental Section

The solvents, CH_2Cl_2 and THF, were dried over P_2O_5 and potassium benzophenone ketyl, respectively. The compound TaCl₄(dmpe)₂ (2) was prepared by the literature method⁴ with bis(dimethylphosphino)ethane, dmpe, purchased from Strem Chemicals. **All** materials were handled under argon with use of Schlenk and vacuum-line techniques. $Ta_2Cl_6(SMe_2)$ ₃ was prepared as described previously.⁶

Preparation of $[P(CH_3)_4]$ **TaCl₄(dmpe)₂**]₃Cl₄·4(CH₃)₂S (1). An addition funnel was charged with **4** equiv' of dmpe (0.45 mL, 2.70 mmol) followed by 10 mL of CH_2Cl_2 and attached to a flask containing $Ta_2Cl_6(SMe_2)$ ₃ (0.5 g, 0.66 mmol) dissolved in 20 mL of CH₂Cl₂. The contents of the addition funnel were added to the flask slowly, and the solution was allowed to stand at 25 °C for 24 h, yielding a yellow-brown solution and a red precipitate. The solvent was removed by vacuum distillation, and the resulting orange-brown solid was extracted with hexane (2 **X** 10 mL) to remove excess dmpe. The solid was redissolved in CH_2Cl_2 and filtered through a Celite pad, leaving the insoluble red material behind. After the solution had stood *5* days at 25 °C, a deep yellow solution over a large amount of red solid⁵ was obtained. Intermixed with the red solid were cubic yellow crystals of **1** of suitable quality for X-ray analysis, in ca. **5%** yield. Crystals of **1** were mildly moisture sensitive (decomposition in moist air in <10 h).

X-ray Crystallography **of** Compound **1.** Geometric and intensity data were obtained from a crystal of dimensions 0.30 **X** 0.30 **X** 0.25 mm. The crystal was sealed inside a glass capillary tube and mounted on an automated four-circle diffractometer (Enraf-Nonius CAD-4) equipped with a Mo X-ray tube $(\lambda \bar{\alpha} = 0.71073 \text{ Å})$ and a graphite monochromator.

Unit cell dimensions and the orientation matrix were given by a least-squares fit of these parameters to the goniometer positions of 25 well-centered reflections in the range $29.8^{\circ} < 20 \leq 38.5^{\circ}$. The

⁽¹⁾ Kepert, **D.** L. *Prog. Inorg. Chem.* **1978,** *24,* **179. (2)** Burdett, J. K.; Hoffmann, R.; Fay, R. C. *Inorg. Chem.* **1978,17,2553.**

⁽³⁾ Cotton, F. **A.;** Falvello, L. R.; Naijar, R. C. *Inorg. Chem.* **1983,22,** 375. **(4)** Datta, *S.;* Wreford, *S. S. Inorg. Chem.* **1917,** *16,* **1134.**

⁽⁵⁾ Clark, R. J. **H.;** Kepert, D. L.; Lewis, J.; Nyholm, R. *S. J. Chem. SOC.* **1965, 2865.**

⁽⁶⁾ Cotton, F. **A.;** Najjar, R. C. *Inorg. Chem.* **1981,** *20,* **2716.**

When less dmpe was used, a complex mixture of products that could not be separated was obtained.